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ABSTRACT

Random Wave Forces on a Free-to-Surge Vertical Cylinder (May 1988)

Charles Blake Sajonia, B.S., University of Washington

Chairman of Advisory Committee: Dr. J. M. Niedzwecki

The principal objective of this research is to to gain insight into the applications

and limitations of the relative motion form of the Morison eqii,-tnn for tbe

prediction of hydrodynamic forces on a free-to-surge vertical cylinder in random

waves. Force transfer coefficients are estimated from experimental data using

regression with auto'regressive errors. The best.fit relative motion form of the

Morison equation results in a root-mean-square error of 24% and a multiple

correlation coefficient of 0.71, over a 16 second time series. A high frequency force

r'. component not accounted for in the Morison equation is quantified. Cross-spectra

are used to show that this residual force can not be duplicated by the relative motion

Morison equation due to the lack of explicit history terms. A force transfer model

containing explicit history terms is presented. The improvement in force prediction

with increasing memory is illustrated and a memory length is chosen that optimizes

the tradeoff between model complexity and goodness-of-fit. The new model reduces

the rms error from 24% to 9%, increases the multiple correlation coefficient from

0.71 to 0.83, and captures the high frequency force components not accounted for r

in the Morison equation. A simple numerical simulation of a tension leg platform

is performed to illustrate the application and limitations of the results.
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CHAPTER I

INTRODUCTION

A. The Relative Motion Morison Equation

The principle objective of this research is to gain insight into the applications

and limitations of the relative motion form of the Morison equation for the

* prediction of hydrodynamic forces on a free-to-surge vertical cylinder in random

waves. In 1950 Morison, O'Brien, Johnson, and Schaaf (1950) presented an

.empirical equation which describes the wave induced hydrodynamic loading on

a fixed vertical pile. Their equation, which is popularly known as the Morison

equation, can be expressed as

y CD 7rD 2
f =CdP jIlu + Cp-a, (1.1)

where f is the force per unit length acting on the pile, Cd and C, are force transfer

coefficients, u and a are the horizontal fluid particle velocity and acceleration, p is

the density of the fluid, and D is the diameter of the pile or cylinder. The total

wave induced force acting on the cylinder is considered as the sum of a viscous drag

force component and an inertia component. When the structure moves in response

to hydrodynamic loads, Equation (1.1) is often modified by using relative velocities

and accelerations. The resulting equation is known as the relative motion or wave-

structure interaction form of the Morison equation. This equation can be expressed

, "" as

D 7rD 2  7rD 2

f./ CdPi, U ii(u - i1 + C.p--T(a - i) + p -a, (1.2)
2 4' 4

Journal model is ASCE Proceedings of the Waterway, Port, Coastal and Ocean

Engineering Division.
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where i and : are the velocity and acceleration of the cylinder, respectively, C, is

the added mass coefficient defined as C, = C, - 1, and the last term is known as

the Froude-Krylov force which is the result of the local acceleration of the unsteady

flow.

A number of researchers, e.g. (Sarpkaya and Isaacson, 1981), have shown that

the force transfer coefficients Cd and Cm are not simple constants, but functions of at

, least four parameters: cylinder roughness, Reynolds number, Keulegan-Carpenter

number, and time. Thus, the relative motion Morison equation is an engineering

approximation to a complex problem.

B. Flow History

Although the Morison equation contains only instantaneous or time averaged

parameters, the actual hydrodynamic force acting on a submerged body depends on

both the instantaneous and preceding flow conditions (Hamiliton, 1972). However,

most investigators have ignored this history dependence in light of the many

p other uncertainties in wave force calculations. Others, such as Keulegan and

Carpenter (1958) and Sarpkaya (1981) have corrected for this error by including an

instantaneous correction term. In periodic flow, the fluid particle kinematics change

with time, but the pattern is continually repeated. Since the preceding cycles are

identical. the history effects can be represented by an instantaneous correction term

instead of an explicit history term. This approach was utilized by Keulegan and

Carpenter (1958) in a series ot seiche-tnk flow experiments. A "r,'-sinder force"

AR was introduced to account for the differences between predicted and measured

forces on a submerged cylinder.

Prpkaya (1981) has also quantified AR in a series of one-dimensional periodic

e-.. . . .
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flow experiments. In addition, the limitations of the Morison equation were

- illustrated by plotting the instantaneous values of Cd and C,. It was shown that

Cd and (. ,, exhibit large variations during a given cycle, particularly for values

of t. Keulegan-Carpenter number between 8 and 25, and that accelerating and

0 decelerating flows, with identical absolute values of the corresponding fluid particle

kinematics, do not exert identical forces on the cylinder. These observations suggest

that IR is partly the result of neglecting the effects of flow history and partly due

rto the other simplifications inherent in the Morison equation. Sarpkaya represented

the "remainder force" as an instantaneous correction term given by the Fourier

expansion proposed by Keulegan and Carpenter (1958), or

" R = C3 cos(30 - 03) - C5 COS(50 - 05) + C, COS(nO (1.3)

where 0 = T . The use of odd harmonics was justified since the significant force

components occurred at the fundamental frequency and the 3rd and 5th harmonics.

The force transfer model proposed by Keulegan and Carpenter (1958) and Sarpkaya

(1981) is then the sum of Equations (1.1) and (1.3), or
D 7rD'

CD
f CdP- -Uiu Cemp- a C 3 cos(30-4 3 )±Cscos(50- 0s), (1.4)

24

where u -U cos0, i.e. the flow is periodic with a maximum velocity equal to

U. Although this model reduces the rms residual force by approximately 60%,

it has two limitations- (1) the four parameters which de'fine the correction term

C 3 . C5 . € and 05 have little physical significance, and (2) the flow is assumed to

be periodic. The experiments performed by Keulegan and Carpenter (1958) and

Sarpkaya (1981) prove that AR is not the result of the complications introduced in

wavy flow. e.g. the limitations of the wave theory employed to estimate the fluid

.
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particle kinematics, the orbital fluid particle motion, etc. Therefore, attempts to

correct for this error by adjusting the wave theory model may not lead to significant

S:- improvement.

Bird and Mockros (1986) performed a series of 28 tests in which an instru-

* mented cylinder was accelerated or decelerated in still water in order to estimate

the relative magnitude of the history force. Four cases were examined: (1) acceler-

* ation from rest to a constant velocity, (2) deceleration from a constant velocity to

q -rest, (3) acceleration from one constant velocity to a higher constant velocity and

(4) reversal from a constant velocity to a similar constant velocity in the opposite

K- direction. The results verify the findings of Sarpkaya (1981) and suggest that the

, .relative magnitude of the history force is significant, and at times equal to the max-

imum added mass force during acceleration and over half the steady state drag force

S.during deceleration for the specific cases studied. The method employed by Bird

and Mockros (1986) to estimate the history force was somewhat arbitrary since it

was presumed that the Morison equation, with constant coefficients, can correctly

predict the instantaneous drag and inertia components. Bird and Mockros proposed

that the introduction of a history force term may account for an important feature

of the fluid dynamics and reduce the variability between measured and calculated

. "forces. The force subdivision approach was based on a discussion given by Hamilton

. (1972). Hamilton suggested that the hydrodynamic force on a submerged body in

nonperiodic flow should be separated into three parts:

(1) the conventional drag component,

* (2) the conventional inertia component, and

(3) an explicit history term.

•......... ..........................-...- - - - - --... -.. -... -..".' - °.5- 5. " . '-''Z"-*''2 ".'"' -'''' """
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C. Regression Analysis

Given the time varying force acting on a cylinder and the corresponding fluid

particle kinematics, force transfer coefficients may be estimated in a variety of ways.

The approach employed by most researchers in the past has been ordinary least

- squares regression, e.g. Reid (1958), Aagaard and Dean (1969), and Wheeler (1970).

However, new statistical techniques are now available which are particularly suitable

for time series data (Newton, 1988). Therefore, a brief review of regression analysis

and an alternative model fitting technique are presented.

Regression analysis is the fitting of an equation to a set of values. The

equation predicts the response vector y from a function of the regressor matrix

X and parameter vector B, adjusting the parameters such that a measure of fit is

optimized. The method used to estimate the parameters is to minimize the sum

of the squares of the differences between the actual and predicted responses. InU
matrix notation

: y=XB + ', (1.5)

g such that B minimizes

S(B) (y- XB)T(y- XB). (1.6)

This analysis is based on several assumptions, including: (1) that the expected value

of the errors (E) is zero and (2) that the errors are uncorrelated across observations.

When regression is performed on time series data, the errors are often autocorre-

lated, violating the second assumption and perhaps the first. In this case there

are several new methods to estimate B. One such method is regression with auto-

regressive (AR) errors. This is an iterative procedure in which the following steps

are performed:

--
;g_
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(1) use ordinary least squares to find initial estimates of B and E,

" o (2) fit an AR model to E,

. (3) create a new response vector z and regressor matrix W by applying the AR

filter of step (2) and

(4) return to step (1) using z and W instead of y and X.

This process is repeated until successive iterations result in the same value of AR

C' order. A more thorough discussion along with the software required to perform the

above analysis is given by Newton (1988).

D. U.S. Naval Academy Experimental Program

In order to gain insight into the applications and limitations of the relative

motion form of the Morison equation, a multiple phase experimental program was

a conducted at the U.S. Naval Academy, Hydromechanics Laboratory (Shields and

Hudspeth, 1985). The results from the earlier phases are reported by Dawson

(1984) and Dawson, Wallendorf and Hill (1986). The data analyzed in this thesis

-- is the result of an extension of these experiments to include both relative motion

and random wave loading. The USNA test assembly was subjected to random

waves of approximate Bretschneider spectra with a significant wave height of 20

cm and a dominant wave period of 2.38 seconds. The maximum Reynolds number

was approximately 2 x 10' and the maximum Keulegan-Carpenter number was

approximately 50.

' .' The test assembly consisted of a smooth stainless steel rod of one meter length

and 2.54 cm diameter. The cylinder is attached to a free-to-surge aluminum

subcarriage which is supported on two linear bearings and restrained be elastic

springs. The test assembly is illustrated in Figure 1. Instrumentation used in the

.1 A .
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experiments included a high frequency sonic transducer, a variable reluctance force

gage and a resistance wave staff. Instrument signals were passed through an analog

filter with 20 Hz cut-off frequency and an analog-to-digital converter before storing

on computer disk. The acquisition rate was 51.2 samples per second. The accuracy

of the measured surface elevation, surge displacement, and force are estimated to

be 0.02 cm, 0.02 cm., and 0.05 N, respectively (Dawson, Wallendorf and Hill, 1986).

The data is analyzed in the next chapter using time series analysis techniques.

t..

W'

U"
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Linear Bearings

Figure 1. Sketch of IT.S. Naval Academy Test, Assembly.



CHAPTER II

DATA ANALYSIS

A. Fluid Particle Kinematics

The first step in analyzing the USNA data is to estimate the fluid particle

kinematics from the measured surface elevation time series. This is accomplished

using harmonic analysis. The measured surface elevation is represented as an infinite

sum of small amplitude waves, with closely spaced frequencies, and random phase

angles
00

77(x, t) = A,n cos(k,x -wI + €,L), (2.1)

where r/denotes the elevation of the water surface above the mean water level, A, is

the amplitude of the nth wave component, and kn, w,, and On are the corresponding

' S wave number, frequency, and phase (Borgman, 1972). The amplitudes An and phase

angles 0, are calculated most efficiently using the fast Fourier transform (FFT)

algorithm. The horizontal velocity and acceleration at (x, z, t) are then given by

i 00 cosh k,(h + z)

u(x, z, t) E W fl sinh kh 4, COS(kX - Wn + On), (2.2)

and

a(x, z,t) 0Z w cosh kn(h +z) An sin(k - wt + On), (2.3).. ~~ ~ Y n~,z t sinh k,h

n=1

where the wave number and frequency are related through the dispersion relation

Wn gk, tanh kh. (2.4)

In Equations (2.1) through (2.3) the Fourier components are summed from

n - 1 to oc, however, wave records generally consist of discrete samples. A sampling
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interval of 1/10th to 1/20th of the dominant wave period is often recommended.

The highest frequency that can be used in the Fourier summation is then

0.5 (2.5)

where At is the sampling interval. This frequency is known as the Nyquist

-frequency. The dominant wave period of the USNA data is 2.38 seconds. A

sampling interval of approximately 1/15th of the dominant wave period was chosen,

4or At = 0.15624 seconds. Therefore, the Nyquist frequency is approximately 3.2

Hz. This sampling interval reduces the amount of data to be processed without

loss of any significant high frequency components. The spectral density estimates

before and after sampling were compared to ensure that the measured spectra were

represented accurately.

B. Regression Model Formulation and Solution

Given the time varying force acting on the cylinder, and the corresponding

fluid particle kinematics and cylinder dispacement, force transfer coefficients can

be estimated using the regression with AR-errors technique described in Chapter 1.

The total force acting on the cylinder at time t may be considered as the linear

combination of three terms: (1) the drag component FD given by
D 0

FD(t) = P 2 U( ,t)- (t) {u(z,t) - ;(t)}dz, (2.6)

9 "(2) the inertia component F given by
2 0°

Fl(t) = p {a(zt) - i(t)}dz, (2.7)

and (3) a force component resulting from the acceleration of the fluid by the cylinder,

FF given by

FF(t) PVi(t), (2.8)

.
ZZ 

f%

iM"F



S- . where h is the submerged length of the cylinder and V is the volume of displaced

fluid. The last term may be combined with the measured force acting on the cylinder

v ~and denoted by F(t) to give

F(t) = CdFD(t) + CmFI(t). (2.9)

Equation (2.9) is now in the form of the regression model y = XB + C, where
X = (FD, FI) and B = (Cd, Cm)T. The best linear unbiased estimate of B results

in:

Cd=0.93 and C,=1.73.

A thorough time series analysis of the errors results in the following observations:

(1) the errors E are highly autocorrelated, (2) the cross-correlations between the

prewhitened error time series and the prewhitened cylinder velocity and surface

elevation time series are relatively small (less than 0.4), and (3) the cross-correlation

between the prewhitened error time series and the prewhitened measured force F is
"" large (approximately 0.8 at lag zero). Based on these observations one may conclude

that the errors are not the result of the extension of the Morison equation to include

."-relative motion, but are indicative of a systematic modeling error in the original

S."Morison equation. The primary source of this error is determined in the following

section.
I

% .

, %

C. The Best-Fit Relative Motion Morison Equation

.ZJ Figure 2 compares the best-fit relative motion Morison equation with the
I

measured force over a 16 second realization. The Morison equation "tracks"

the measured time series fairly well, but underpredicts the rms force by 21%.

41NP
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The multiple correlation coefficient, defined as

R' = 1 -. (2.10)
472'

where o- and 2 are the sample variance of the errors and the measured force

.s realizations, is 0.77. One can see qualitatively, that the predicted time series is

- "smooth", while the measured time series is somewhat "wiggly". This is due to the

- presence of a series of high frequency force components that the Morison equation

. .lacks. This discrepancy is illustrated using the standardized spectral density, defined

as

-. In versus w - (2.11)
0.2  n

for k = 1,..., [2] +1, where S11 is the usual two-sided spectral density, a 2 is the

sample variance, and n is the total number of observations (Newton, 1988). The

standardized two-sided spectral density estimates for both predicted and measured

forces are shown in Figure 3.

*: The high frequency residual force is readily apparent, with a peak at approxi-

mately five times the fundamental frequency. The cause of this error can be deter-

- mined through cross-spectra analysis.

Recall that the drag and inertia components serve as the independent vectors

in the regression model, while the measured force is the dependent vector. Figures

4 and 5 show the cross-spectra of the independent and dependent vectors.

Figure 4 is a graph of the coherency spectrum W 12(w) which measures the rela-

tionship between the amplitudes of the sinusoids in the two univariate realizations
I

at frequency w. The coherence is given by

S(L) IS 1 () (2.12)
:S. 1wS2(2

%

! , .



14

-_ _ --- - - -

: :to

, , , a

4---)

, , S , 9 1 .

, a

I..

^ SUa] LPAl@d S  p@7 LpSAPpu ,S

P'. p 9 -L

- a"

* a4
%

* "0

S" ,. .. " '" ,," , ," -' - -" , -" I "I " " • .'" I".""' * ..-'" "" ' ,'", . " %""
' 

*.* *.. ",/ 15 ",- ".'"""I ,3 ,.". . "

I S'- -'-. '.. . . .- """I- . S""""""/ .""" 'j ' ,,, . " v 4:'.W . r .. - - .," , 
'

,:.-



15

%%

_ - - - , --- -,-- - - - - - - - - -

AM..

" ------ -- C

(lop

S. 
,,-

>/- ;;* (1)

Q). 4# N

- - - - -o -

- t t *.4-- l-

C) C--

' , ,

SL4

, K .,

l :.... --..

("I * I I tI

i i C' )

.. , , ,, U)

4*. I, 5
I.. a) -=U
a 5- -,

Xauaaa~4o

,-,, ,,-,. .,-, .. .,-., . ., ,., .- .. ,.. .. . .. ... . .. -..,. ,- - ,--,- <.:. ,. ,. ,. % ,., , ,,, ,3,, ,;



16

C.CD

'p..

%. LL

,4, "- - -a

a 0

.-. to

@SEqd

M A

:'r..
a aa B

a aI .
a aa a



17

where S11 and S 22 are the usual two-sided univariate spectral densities, and S1 2 i;

the complex cross-spectral density. Figure 5 is a graph of the phase spectrum 012(w)

which measures how out of phase the frequency components for the univariate

realizations tend to be. The phase is given by

12(w) =tan- 1 -f q12(w) (2.13)'": €12( ) = tan 1 { c 2 (w)

where

c1 2 (LO) Re{S 12 (W)} and q12(w) -Im{S 12 (w)}, (2.14)

are the cospectral density and the quadrature spectral density, respectively.

Two important observations can be made from the cross-spectra: (1) the

coherence is significant at both the fundamental and 5th harmonic, and (2) a

considerable phase shift exists between the fundamental and the 5th harmonic.

Since the relative motion Morison equation, which contains only instantaneous and
time averaged parameters, is able to capture the fundamental frequency component,

but not the 5th harmonic, one may conclude that the 5th harmonic lags the

fundamental frequency component. That is, the 5th harmonic is the result of flow

history. If this is true, then considerable improvement in force prediction can be

achieved through the use of a force transfer model containing lagged versions of

the independent vectors, i.e. history terms. Such a model is presented in the next

section.

D. A Force Transfer Equation with Memory

Recall that the regression model used to estimate the best-fit relative motion

oiorison equation is

F(f) CdFD(t) - C..FI(t). (2.15)
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. -Instead of the usual approach of using time averaged force transfer coefficients Cd

and Cm, consider F(t) as the sum of a filtered version of the drag component time

S"series plus a filtered version of the inertia component time series, or

00 00
F(t) = akFD(t - k) + - k Fz(t - k), (2.16a)

'k=-oo k=-o

with the following constraints

0o, if k<0) 0f , ifk<0;
a O ifk and lk , ifk >0 (2.16b), 0-,- if k > 1 0 if k > I

where a and f are force transfer coefficient vectors, and I is the maximum lag used

in the model, i.e. I is a measure of the memory. Note that when I = 0 Equation
I

(2.16) reduces to Equation (2.15), the relative motion Morison equation. Thus, the

*- instantaneous force acting on the cylinder is now represented by the superposition

. of a filtered version of the drag component and a filtered version of the inertia

component, both containing only non-negative lags. In this thesis, Equation (2.16)

will be called the "force transfer filters". The improvement in force prediction, and

the tradeoff between model complexity and goodness-of-fit is illustrated in the next

A section.

E. Model Complexity vs. Goodness-of-Fit
I

* .."Figures 6 through 10 illustrate the impruvement in force prediction with

increasing memory. As the memory is increased, the error between rms forces is

reduced while the multiple correlation coefficient R2 is increased. These calcualtions

were performed on 27 realizations containing a total of 432 seconds of data

(approximately 180 waves). As is the case with most regression models, there

is a tradeoff between model compj=kxty and goodness-,f-fit. For the USNA data a
I

°.
S

..- ,... .:. ...-. ., .,-.: .-. .. : . .:-. .. ..-...-...... , - .4 ... --... -. . .. -. .. -... -.. . . . : .... -- :. .. .. .- *. , -% '..--.-. . . ,
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ten lag memory was chosen as the optimal model. Using the force transfer filters

with I = 10 reduces the mean rms error from 24% to 9% while increasing the mean

multiple correlation coefficient from 0.71 to 0.83. Since the sampling interval is

At = 0.15624 seconds, the 10 lag memory corresponds to 1.5624 seconds. This can

be nondimensionalized by dividing by the dominant wave period T 2.38 seconds

to give

S.At- 0.66.
T

Thus, the optimal model for the USNA data contains a memory equal to two thirds

of the dominant wave period.

In addition to decreasing the rms residual force by an average of 170%, the

,: force transfer filters capture the 5th harmonic not accounted for in the Morison

equation. These small amplitude, high frequency force components may govern the

j fatigue analysis of offshore structures. As shown in Figure 11, the ten lag memory

force transfer filters duplicate the measured spectral density almost exactly.

, -
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CHAPTER III

NUMERICAL SIMULATION

A. Tension Leg Platform Model

The purpose of this chapter is to provide a simple example of the application of

the force transfer models discussed in Chapter 2. A tension leg platform is modeled

as a nonlinear, single degree of freedom system (SDOFS) by considering motion only

in the surge direction. Riser and tendon dynamics are neglected. Furthermore, it

is assumed that diffraction and reflection of the waves are negligible. The equation

of motion is established by equating the sum of the inertia, damping, stiffness and

external forces at time ti:

mii + cai + kx = Fi, (3.1)

where m is the mass of the platform and deck equipment, c is the damping, k is

".0: the stiffness and F is the hydrodynamic force resulting from the fluid-structure

interaction.

Following the derivation by Malaeb (1982), the stiffness is obtained by displac-

ing the platform an arbitrary distance in the surge direction (Figure 12).

Summing the horizontal forces gives

kx = N(To + AT) sin ?k (3.2)

-_ -: where k is the stiffness ii the x-directiou due to an arbitrary surge displacement, N

is the number of tension legs, To is the pretension of each leg and AT is the increase

in tension per leg, given by

AT = kAd, (3.3)



tuu . uw~u~~wq.-,g,-mI M ~ ., .- 27

4.CD

t-

4.,.



28

where k, is the equivalent stiffness per leg. In most cases AT is less than 20% of

S .. the pretension To. The change in cable length Ad and the angle of inclination b

are given by
Ad = d + 2  - d, (3.4)

and x

sin d2, ---= + x2  (3.5)

Substituting equations (3.3) through (3.5) into Equation (3.2) gives

Nk = (To + k/ + x 2 -kcd) (3.6)
v/d 2 + X2

Thus, the restoring force resulting from an arbitrary surge displacement is a function

of the magnitude of the displacement as well as the material properties, pretension,

and elongation of the tendons. The form of Equation (3.6) is that of a "hardening

g spring". When the surge displacement is small (x << d) Equation (3.6) can be

reduced to a linear function of x:

k- N To (3.7)
d

The restoring force kx vs. x is plotted in Figure 13 using both Equations (3.6) and
(3.7) with k, = 7.0(107) N/m, To = 4.8(107) N, and d = 200 m. The data listed in

Table 1 are used for simulation purposes.
Ce

I..

,J2..
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Table 1. Typical TLP Data Basted ,i: Kirk arid Etok (1979)

Structural Component Dimensions

Diam,-ter of -4 corner columns 16 m

Diameter of 4 rpnddle columns 3.5 m

Diameter of 2 cross braces 6 m

Spacing of corner columns 70 in

Draft, h 35 m

Total mass in air. m 5.4(107) kg

Fluid added mass in surge 3.3(107) kg

'I Cable stiffness per leg, k, 7.0(107) N 'm

Pretension of each leg. Tg 107 - 108 N

Water depth 200 - 1000 m

Critical damping ratio. . 0.00 - 0.15

3 B. Solution Procedure

The nonlinear equation of motion can be solved using one of several direct

intearation procedures. The Newmark-3 method is chosen because of its well known

convergence and stability criteria (Newmark., 1962). The Newmark-3 equations are

used to determine the velocity and displacement of the structure at time ti-I based

on the corresponding value, at time t, and the acceleration at time t,. Since the

V- ''.

ht i.a: -- ; ,: w :sing such a pr,,ce,:;re is that an" nm elirwaritiws..- ici, as the"

TLP stiffness given by Equation (3.6), can easily be included in the analysis. The

-~ .. . N % % % ****~
-7.. . . .. . . . . . .- ..
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Newmark-f equations are as follows:

zi+ ii + (1 - -Y)iiAt + 3,:,++At (3.8)

and

'i+1 =i + ziAt + (0.5 -0):,(At) 2 + 3 i+31(At)
2  (3.9)

where -y is taken as 0.5 to avoid spurious numerical damping and 3 is taken as 0.126

to ensure numerical stability with convergence (Newmark, 1962). The assumed

value of zii-I is compared with the corresponding value calculated from the equation

of motion:
1

,+= -(F+1 - cij+1 - kxi+l). (3.10)
m

Equations (3.8) through (3.10) are solved in an iterative manner until the assumed

and calculated values of i 1 converge. The process is then repeated for subsequent

time steps.

In order to ensure numerical stability, a two-pass procedure is used wherein

the response of the TLP is first estimated using the relative motion form of the

S Morison equation. The drag and inertia force components are then filtered and

superimposed using Equation (2.16) to obtain an adjusted force time series. This

time series is then used as input to the Newmark-0 algorithm, thus obtaining an

adjusted response time series (Figurc 1A

C. Simulation Results

The results from two typical numerical simulation cases are presented in Figures

15 through 24. In case one, the random wave profile is scaled such that the maximum

wave height is app.oximately 10 meters. In case two, the same wave profile is used,

) .... '.%
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but scaled such that the maximum wave height is 30 meters. The force, surge,

and tension time series are plotted after both the first and second pass of the

Newmark-3 algorithm. In both cases, the force transfer filters (2nd pass) result in

a substantial increase in high frequency force components. These components are

.S more pronounced when the wave height is small and the wave period is short. This

may be due to the phase shift resulting from the spacing of the columns. If the vave

length is equal to twice the column spacing (140 meters), then the resulting forces

on opposing columns will partially cancel with one another. In all cases, the surge

response is smooth because of the large inertia of the TLP. Since the variation in

tension was represented as a function of the surge displacement by neglecting the

dynamics of the tension legs, the tension time series is also smooth. If the dynamics

of the tension legs were included by modeling the TLP as a MDOFS, then these

high frequency force components should also occur in the tension time series. Such

an analysis could explain the tension leg "ringing" phenomenon.observed in the

Hutton TLP model tests (Mercier, 1982).

Although both cases produce similar results, the effect of the force transfer

U filters is more pronounced in case two where the maximum wave height is much

greater than in case one. The principle limitation of the use of these filters is

that the scale effect is unknown at this time. Like the Morison equation, the

force transfer filters should be calibrated for a specific design application, taking

into consideration the wave theory employed to estimate fluid particle kinematics,

the ocean wave design spectra, and the size, shape, and interaction of the various

structural components which comprise the platform.

N N N
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CHAPTER IV

CONCLUSIONS

* "?In this study, experimental data were analyzed to gain insight into the appli-

cations and limitations of the relative motion form of the Morison equation for the

prediction of hydrodynamic forces on a free-to-surge vertical cylinder. A new force

prdirtic., proc re-' v.'was presented to account for the effects of flow history on the

instantaneous force. The following conclusions are made based upon this research:

(1) Small scale model tests suggest that the effect of flow history is significant in

the prediction of hydrodynamic forces.

(2) The relative motion form of the Morison equation can not duplicate the high

frequency force components measured in small scale model tests.

(3) In this study, the inclusion of explicit history terms captured the high frequency

gforce components, increased the multiple correlation coefficient from 0.71 to

0.83, and decreased the root-mean square error from 24% to 9%.

(4) The procedure to include history terms can be incorporated into the response

simulation of more complex offshore structures such as the TLP.

The results from this research suggest that significant improvements in hy-

drodynamic force prediction can be obtained by including explicit history terms.

A strong research effort is required to determine the scale effect on these history

terms. Future research should include both large scale model tests and field data

:. analysis. The results may prove to be of great importance in the fatigue analysis of

offshore structures and may explain some of the variability between measured and

calculated forces.
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APPENDIX A

NOMENCLATURE

amplitude of nth wave component

a horizontal fluid particle acceleration

B regression parameter vector

C. added mass coefficient

Cd drag coefficient

Cm inertia coefficient

C 3 , C5  remainder force Fourier coefficients

c structural damping coefficient

C12 cospectral density

* D diameter

d length of tension leg at zero surge displacement

Ad change in length of tension leg

F total hydrodynamic force

FD hydrodynamic drag component

F1  hydrodynamic inertia component

FF force resulting from the acceleration of fluid

- f hydrodynamic force pe- unit length

Af Nyquist frequency

" acceleration of gravity

h water depth

k structural stiffness

k equivalent stiffness per tension leg

.:,.2 -.. -P.,2,' -.- .. ,. .J." : .. ',, .0.1., b 5""." " '; ,"':' ,- L '':5'''". '' % *: %
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k,, wave number of nth wave component

1 maximum lag used in a filter i.e. memory length

* . m mass of structure

N number of tension legs

q12 quadrature spectral density

R 2  multiple correlation coefficient

C" AR remainder force i.e. error

T wave period

TO pretension of each tension leg

AT increase in tension per tension leg

t time

At change in time

S(B) sum of the square of the errors

S11, S2 2  univariate spectral density

",2 complex cross-spectral density

u horizontal fluid particle velocity

1,2 coherency spectrum

X regressor matrix

z, x, x surge displacement, velocity, and acceleration

t. y response vector used in regression analysis

z elevation from mean water level

ak drag filter coefficients

Newmark# parameter

-. inertia filter coefficient

-y. Newmark-f parameter

%

i.e r a, jl
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error time series

77 surface elevation time series

0 nondimensionalized time defined as T

7r 3.141 ...

p fluid mass density

0,2  sample variance

£k, phase angle of the nth wave component

012 phase spectrum

angle of inclination in the xz plane

frequency given by ' for k

O, frequency of the nth wave component

V volume of displaced fluid

%a"
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APPENDIX B

TIME SERIES ANALYSIS SOFTWARE

The statistical analysis results reported in this thesis were obtained using

TIMESLAB. This computer program is essentially a time series analysis language

, consisting of approximately 150 commands. The software is provided with the

text: TIMESLAB: A Time Series Analysis Laboratory (Newton, 1988). Some of

the features which were used in this research include: regression with AR-errors,

a test for white noise, auto- and cross-correlation, coherence and phase spectrum

estimation, nonparametric spectral density estimation, and a test for statistical

independence of two univariate realizations.

The TIMESLAB user can create fies or "macros" containing commands.

The macros used to estimate and plot the best-fit relative motion form of the

Morison equation and the best-fit force transfer filters are provided below. Note

that FILTERS.MAC calls another macro, REGAR.MAC, which is not listed here.

REGAR.MAC is provided as part of the TIMESLAB software package.

I

p.'. ."% -',- . --.- % :'.-: 'x ' ''-' "5v --.. , -: .' - -- '- '- .. ' .:: .:: -i.'- ,: '- -'-::-'-'- -

' ) . ,'.. ,i i .ti.i, tid~ i gill ll ifl"= " " ... .



31

FIEPS.MAC -,:MESLAS macro to estimate and plot tr'e oest-f't relat've

motion Morison equal'ol and t-)e oest-f it force transfer

filters using regression witr AR-errors.

rinout: YI = total force

- = m~aximum lag

PAUSE
:start

- -. eg~essor carameters

a o30

y=EXTRACT(yl 1,]) instantaneous total Force

xl ag=ExTRACT(xI1'1*j) i nstantaneous crag force

x2lag=EXTRACT(x2.iij) instantaneous-inertia force

x=<cxilag,x2lag> form regressor matrix

rA~0 r=2 a strteg~-ess on instantaneous values

_A5EL(jyyl= Mor~son Eo~at ion

mAxmINIy,.n.ymax2.imax.ymin2.imin))

save~y
)/=y+yabs+ymax 1
vsavel 1

PLO'S'ZEl480,i20.5z-;3C.8,10,8S'l.O.O)

MACRO(error. start)

LABEL(time)= Time (sec). Error=#err#%; R2=kR2@'

PLOTON
PLOT(time~y,ri,.1G,ymifl2,ymaxI) plot measured and predicted force

LiOT(time~y.ri.O,6.ymil2.ymai) using the Morison equation

PLOTOFF
Cd=tbeta( I]
Cm=beta[ 2)

LIST(Cd.CM) list drag and inertia coefficients

DROMPTOFF

mmI

KMin=k-maxag

-.loop loop to get lagged values

k= -I

,2gE~~0'Xv.)form r-egressor matrix

(F k.eq.kmiri,stoo) ,using lagged values

GOTO (loop)

6 stop end of loop

N 0'W% N
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Y-\save
'0LE-AN(xllag.x2lag,k.1)
MACRC(regar start) regress with r'istory ter~ms

.-AE7E.A ;77F wit" Iag Lao Memor.,,

%44MVN( y .n,/ma.C, lmax~ynin2 imr
VACCerror start I
L4EE:-Time)=T7ime (seC). Eror=aerr5: R2aR,

.'me, .C, Er~2.vrax I c! measu-e-c aric oeocce, zo~ze
-(rr~yy~C1yml~vr~1)using tne force transfe- filte-s

* E~RDP Macro to compute the rms error and multiple corre'ation
* coefficient.

Input. ysave = MeasuredFoc
* yy = Predicted
*l = iengtri of arrays

start
yrrrs=MMUL(ysave,saveI~n. 1)
yrrns= yrms/n} *0. 5

yms=MMULT(yy.y,! i, )
, rrrs= yrn . .

mrms=yrmsr 1 1
prms=yy-rs[ 1
ci ean) yrms. yyrms)
error= {mrms-prms)l/mrms. 100
err =^
err:=error
de , ta=error-err
IF (del ta.it .0.5,sk, p)

err err" 1

rnc=CR(resnri300lse2.per)
-ric=0RR(yr300,1sY2,er)
R2 O-se2s.

o .
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